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Abstract: Spinal cord injury (SCI) results in an array of cardiometabolic complications, with obesity being the most common 
component risk of cardiometabolic disease (CMD) in this population. Recent Consortium for Spinal Cord Medicine Clinical 
Practice Guidelines for CMD in SCI recommend physical exercise as a primary treatment strategy for the management of 
CMD in SCI. However, the high prevalence of obesity in SCI and the pleiotropic nature of this body habitus warrant strategies 
for tailoring exercise to specifically target obesity. In general, exercise for obesity management should aim primarily to induce 
a negative energy balance and secondarily to increase the use of fat as a fuel source. In persons with SCI, reductions in the 
muscle mass that can be recruited during activity limit the capacity for exercise to induce a calorie deficit. Furthermore, the 
available musculature exhibits a decreased oxidative capacity, limiting the utilization of fat during exercise. These constraints 
must be considered when designing exercise interventions for obesity management in SCI. Certain forms of exercise have 
a greater therapeutic potential in this population partly due to impacts on metabolism during recovery from exercise and 
at rest. In this article, we propose that exercise for obesity in SCI should target large muscle groups and aim to induce 
hypertrophy to increase total energy expenditure response to training. Furthermore, although carbohydrate reliance will be 
high during activity, certain forms of exercise might induce meaningful postexercise shifts in the use of fat as a fuel. General 
activity in this population is important for many components of health, but low energy cost of daily activities and limitations 
in upper body volitional exercise mean that exercise interventions targeting utilization and hypertrophy of large muscle 
groups will likely be required for obesity management. Key words: body composition, body fat, energy expenditure, lifestyle 
interventions, physical activity
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Introduction
Spinal cord injury (SCI) profoundly impacts the 

structure and function of many body systems, as 
evidenced by the breadth and depth of associated 
secondary complications. Recent advancements in 
medical practice1 have increased life expectancy2 
consequentially increasing risk of developing 
cardiometabolic comorbidities.3-19 Specifically, 
persons with SCI experience accelerated risk for 
accumulating adipose tissue20-33 and developing 
lipid34-43 and glucose44-58 metabolism disorders. 
Accordingly, the Consortium for Spinal Cord 
Medicine (CSCM) recently released clinical 
practice guidelines for cardiometabolic disease 
(CMD) in persons with SCI.3 The CSCM CMD 
guidelines recommend physical exercise as a 
primary treatment strategy for the management of 
CMD in SCI. Furthermore, AGREE II evidence-

based activity guidelines59 were recently updated60 
and state with moderate to high confidence that 
exercise benefits CMD in persons with SCI.60 

However, neither of these guidelines contain details 
about how to deliver exercise to specifically target 
the component risk(s) that comprise the CMD 
disease state. Efforts to tailor exercise to address 
obesity in SCI are warranted, as obesity is the most 
prevalent CMD risk factor in this population.3 This 
review starts by summarizing current guidelines on 
exercise and obesity in persons with SCI. We then 
present considerations for the implementation of 
exercise as a strategy for managing obesity in SCI. 
In doing so, we view obesity through the lens of 
calorie balance and focus principally on the ability 
for exercise to increase energy expenditure (EE). We 
acknowledge that no behavior occurs in a vacuum, 
and energy deficits induced by exercise can readily 
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be negated by concomitant increases in intake and/
or decreases in nonexercise activity. However, this 
issue of Topics in Spinal Cord Injury Rehabilitation 
extensively covers other behavioral contributions to 
obesity in SCI, so this review will focus specifically 
on designing exercise for maximizing EE for the 
management of obesity in SCI.

Considerations for Exercise and Obesity 

Obesity is the most common CMD risk factor in 
persons with SCI,3 with the SCI-specific body mass 
index (BMI) cutoff (≥22 kg/m2), revealing an obesity 
prevalence of ~75%.3 The population-specific BMI 
cutoff is used because SCI results in dysregulation 
of muscle,61-69 bone,70-73 and adipose20-33 tissue that 
renders profound changes in body composition. 
The CSCM CMD guidelines allow for the use of 
BMI ≥22 kg/m2 to diagnose obesity in SCI, but 
there are notable limitations to the use of BMI in 
persons with SCI. Population-specific BMI cutoffs 
are derived from persons with chronic SCI and thus 
are not calibrated for person in the earlier (acute 
and subacute) phases of SCI. There are practical 
limitations in accessibly and accurately determining 
height and weight. Furthermore, regional (e.g., 
sublesional) changes in body composition warrant 
the use of multicompartment modeling of body 
composition whenever possible. In SCI, obesity 
is classified as a whole-body fat (BF) percentage 
of >22% BF for adult men and >35% BF for adult 
women.3 Multiple methods are available for 
determining body composition. Still, there are 
specific considerations and constraints for persons 
with SCI.74 Unique regional changes due to SCI, 
such as atrophy of sublesional skeletal muscle and 
encroachment of fat deposits into the viscera,28-32 

paralyzed muscle,32,33 and bone marrow,71,72 increase 
the utility of assessment techniques that determine 
regional tissue composition. Furthermore, SCI 
imparts methodological constraints on standard 
methods such as bioelectrical impedance and skinfold 
thickness (both designed to be conducted with the 
patient/participant standing). Four-compartment 
modeling, dual-energy x-ray absorptiometry 
(DXA), and a recently validated prediction equation 
using abdominal skin fold appear to have the most 
significant utility for assessing body composition, 
and thus obesity, in SCI.75

Evidence-based guidelines have well established 
the use of activity to increase cardiorespiratory 
fitness and muscular strength in persons with 
SCI.59 Recently, North American guidelines have 
included activity as a viable treatment strategy 
for CMD in SCI.3,60 These guidelines recommend 
“at least 30 min of moderate to vigorous intensity 
aerobic exercise 3 times per week”60 or "at least 150 
minutes per week […] satisfied by sessions of 30-60 
minutes performed three to five days per week, or 
by exercising for at least three, 10-minute sessions 
per day.”3 Current CMD guidelines are designed 
primarily around volume and frequency of activity 
but give vague or no recommendations for intensity 
and mode of the activity. Recommendations 
targeting nonspecific benefits, such as the Exercise 
and Sport Science Australia (ESSA) position 
statement on exercise and SCI, do provide intensity 
categories (i.e., 150 min/week moderate intensity 
or 60 min/week vigorous intensity) similar to 
recommendations for persons without SCI from 
governmental health authorities (e.g., Centers for 
Disease Control and Prevention76 and World Health 
Organization77). However, the specific tailoring of 
exercise intensity to target CMD-related outcomes 
has yet to be adopted into recommendations despite 
calls for recognition of the importance of intensity 
in this context.78 Furthermore, while certain 
guidelines have differentiated between exercise and 
physical activity (PA),60 because of the low energy 
cost of PA (discussed later) it is our opinion that a 
greater emphasis should be placed on the distinction 
between targeted exercise and unstructured PA 
when managing obesity in persons with SCI. The 
result is that the current guidelines do not offer 
recommendations for the tailoring of exercise to 
address the specific component risk(s) that comprise 
the CMD state. The high prevalence of obesity in 
SCI and the pleiotropic nature of this body habitus 
warrant specific strategies for management. There 
are two primary goals for exercise as a treatment 
for obesity: primarily to induce a negative calorie 
balance and secondarily to increase the utilization 
of fat as a fuel source. Inducing a negative calorie 
balance is most readily achieved through reduced 
calorie intake, but exercise can facilitate a negative 
balance via increases in EE. Exercise potentially has 
a multifaceted impact on EE, with acute increases 
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during and after exercise and chronic increases 
in EE if exercise imparts changes in the mass 
and/or activity of metabolically active tissues. It 
should be remembered that changes in EE due to 
exercise can be readily offset by compensatory and 
substitution behaviors, as has been demonstrated 
in SCI.79 However, the following sections will focus 
principally on using exercise to increase EE in the 
context of obesity management in SCI.

Exercise Energy Expenditure 

In general, EE during exercise is the most 
modifiable component of total daily EE in persons 
without SCI ranging from 100 to 8500 kcal/
day.80 This thermic bandwidth imparts exercise 
with the potential to have a great influence on 
the achievement and/or maintenance of optimal 
body weight, composition, and overall health. 
However, this ability for exercise to modify EE is 
greatly diminished by SCI due to large reductions 
in the skeletal muscle mass that can be voluntarily 
contracted, depending on the level and completeness 
of injury. Often those with SCI are limited to arm 
activity that involves a two- to three-fold smaller 
muscle mass than the legs81 and, therefore, is less 
capable of expending energy. Additionally, the 
upper extremity musculature is inherently less 
oxidative. This is evident in elite cross-country 
skiers who have equally trained arms and legs and 
yet the arms compared to the legs are less capable of 
extracting oxygen due to greater variability in blood 
flow and diffusion limitations81,82 and less capable 
of oxidizing lipids82,83 due to lower beta oxidative 
enzyme activities.84

Given reduced muscle mass and oxidative 
capacity, rates of EE during exercise in persons with 
SCI are low ranging from 2.2 to 4.2 kcal/min during 
arm crank ergometry,85 circuit resistance exercise,86,87 
moderate intensity continuous exercise,88 and 
high-intensity interval exercise.88-90 Furthermore, 
these values, already relatively low, scale with level of 
injury, resulting in the need for tetraplegia-specific 
considerations.91 Across a wide range of activities, 
those with motor complete SCI expended 1.7 to 4.0 
kcal/min during activities of daily living and PA and 
1.7 to 8.1 kcal/min during exercise.92,93 The use of 
functional electrical stimulation (FES) to contract 
lower extremity muscles during tasks such as leg 

cycling,94-100 rowing,95,101-104 or other exercise69,105,106 

allows for increased muscle mass to contribute 
to exercise EE. FES cycling and rowing elicit 
maximum EE rates of approximately 5 and 10 kcal/
min, respectively.95 Unfortunately, transcutaneous 
neuromuscular electrical stimulation has inherent 
limitations107 that lead to rapid fatigue.108 With 
the current state of this technology, rapid fatigue 
results in a reduced number of consecutive active 
contractions that can be induced by FES, reducing 
the volume of active exercise that can be completed 
with FES. Combining lower extremity FES and arm 
crank ergometry modestly increases exercise EE 
above these modes alone95-98 and could be especially 
beneficial for persons with higher level injuries.109 
However, steady-state EE with this mode still does 
not exceed approximately 6 kcal/min. During 
volitional exercise, persons with cervical SCI have 
further limitations to exercise EE, with steady-
state arm cycling having a cost as low as 0.9 kcal/
min.91 For perspective, aerobically fit individuals 
without SCI expend 11.1 to 16.6 kcal/min during 
cycling ergometry at 65% to 75% VO2peak110,111 and 
approximately 20 kcal/min during combined upper 
and lower body exercise at 76% VO2max.82

The American College of Sports Medicine112 and 
the US Department of Health and Human Services 
Centers for Disease Control and Prevention76 
general-population guidelines recommend that 
individuals perform 75 to 150 min/week of 
moderate to vigorous intensity aerobic exercise 
to reduce the risk of cardiovascular disease. This 
volume of exercise is associated with minimum 
goal of 1000 kcal/week of caloric expenditure, with 
2000 kcal/week being put forth as a more optimal 
weekly expenditure by an authoritative position 
statement.113 Although persons with SCI may be 
capable of achieving appropriate volumes of activity, 
the associated expenditure goals are impractical, 
with the minimum 1000 kcal/week requiring more 
than 250 minutes of exercise (assuming an average 
rate of exercise EE of 4 kcal/min) and experimental 
evidence showing 4 to over 20 hours a week for 
persons with tetraplegia to achieve the 2000 kcal/
week target. Thus meeting general-population 
expenditure goals requires a substantially greater 
volume compared to the population-specific SCI 
guidelines  (90 min/week of moderate-to-vigorous 
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activity60 or 150 min/week of general activity3). The 
low rates of exercise EE in persons with SCI warrant 
a multiple intervention approach to cardiometabolic 
health, and a strong emphasis should be placed on 
dietary changes in the management of obesity in 
this population.114,115

While expenditure of energy is paramount to 
obesity abatement, the source of the calories is also 
an important consideration. Interventions such as 
aerobic exercise that may stimulate fat oxidation 
are particularly relevant to persons with SCI.  
However, those with SCI have markedly reduced 
mobilization, delivery, and uptake of fat during FES 
cycling compared to those without SCI performing 
voluntary leg cycling.116 These effects of SCI may be 
partially responsible for the reduced oxidation of fat 
during voluntary upper body exercise compared to 
those without SCI.85,111,117,118 However, the limited 
ability to oxidize fat during exercise in persons with 
SCI may be largely due to the mode of voluntary 
exercise available to them rather than their injury 
per se.85 A heavy reliance on carbohydrates during 
exercise does not encompass the full effect of a bout 
of exercise on fat metabolism, as fat sources such as 
intramuscular triglycerides may not be utilized until 
hours to days after an intense exercise session.119 
Therefore, limited contributions of fat oxidation 
to exercise EE does not reduce the importance of 
exercise in the management of obesity in persons 
with SCI as this intervention may have significant 
effects on fat use during several hours of postexercise 
recovery.

Postexercise and Resting Energy Expenditure 

Exercise has acute and chronic effects on EE 
at rest that must be considered when designing 
exercise interventions to manage obesity. After an 
acute session of exercise, EE does not immediately 
return to preexercise levels, but it decays in a manner 
dependent on exercise volume and intensity.120 
This phenomenon was originally identified as 
excess postexercise oxygen consumption,121 and 
postexercise EE in persons without SCI can be 
elevated for hours to days after an exercise session.120 

The few studies that have reported postexercise EE 
in SCI after arm cycling122 and FES leg cycling94 have 
shown a limited (<30 min) elevation of postexercise 
EE in SCI. However, it should be noted that 

postexercise EE was not a primary outcome, and 
therefore neither study employed exercise designed 
to maximize postexercise EE. Studies are currently 
underway to determine the effect of exercise mode 
and intensity on postexercise EE in this population 
(ClinicalTrials.gov NCT03545867).123 Although 
direct data pertaining to postexercise EE in SCI are 
limited, indirect evidence suggests that variables 
beyond exercise EE contribute to the beneficial 
effects of exercise on fat metabolism in SCI. For 
example, it has been shown that 36 sessions of circuit 
resistance training (CRT), costing approximately 
400 kcal/week,86,87 improved the clinical lipid 
profile in persons with paraplegia.124 Similarly, 
FES leg cycling for 135 to 180 minutes per week 
has been shown to benefit body composition and 
cholesterol.125 The exercise EE during these studies 
was well below the posited threshold of 900 to 1200 
kcal/week thought to be required to alter the blood 
lipid profile.126,127 While indirect, these findings 
suggest that optimizing exercise for managing 
obesity in SCI requires the consideration of 
variables beyond exercise EE. The effect of exercise 
on fat utilization is of utmost importance as stored 
fat has been shown to predict cardiovascular disease 
risk factors in persons with SCI independent from 
measures of activity and fitness.128

Along with increasing postexercise EE, a session 
of exercise also results in changes in substrate 
partitioning during postexercise recovery during 
which there is a robust increased reliance on fat 
oxidation.129,130 Glycogen utilization during exercise 
increases postexercise fat oxidation due to lowered 
postexercise glycogen levels resulting in a shift in 
the use of glucose away from oxidation and toward 
glycogen resynthesis.131 The relative decrease in 
glucose oxidation results in an opportunistic 
increase in use of fat as a fuel. Accordingly, 
exercise intentionally designed to maximize 
glycogen depletion has the greatest potential 
to boost postexercise fat oxidation. Multiple 
exercise approaches can result in meaningful 
relative glycogen depletion, but strategies with 
intermittent high intensity contraction (e.g., 
interval exercise, resistance exercise, etc.) achieve 
this goal in a time-efficient manner. For example, 
resistance exercise has been shown to have a similar 
beneficial effect on postexercise fat utilization as 
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endurance exercise despite having a lower calorie 
cost.132 The shifts in postexercise fat oxidation may 
explain the aforementioned benefits of CRT124 and 
FES125 because these modes of exercise are highly 
glycolytic, and the benefits seen in these studies 
seem to exceed what would be expected based on 
exercise EE. Exercise is also known to acutely affect 
the metabolism of the macronutrients in a meal, 
with pre-meal exercise decreasing postprandial 
glycemia133 and lipemia134 in persons without SCI. 
Little is known about the interaction of feeding and 
activity in SCI, but studies are underway to examine 
if peri-meal exercise influences postprandial 
metabolism in SCI (e.g., NCT03545867 and 
NCT03691532).

Exercise resulting in skeletal muscle 
hypertrophy results in multiple benefits to EE. 
First, hypertrophy of muscles involved in exercise, 
such as increases in leg muscle mass in response to 
FES training,69,105,125,135 results in increased exercise 
EE throughout training.99,100 Increased lean mass 
also has the potential to increase resting and basal 
EE. A recent trial in SCI showed that testosterone 
combined with FES resistance training resulted in 
a 221 to 250 kcal/day increase in basal EE.105 These 
findings are encouraging; given reduced resting 
and basal EE136 in SCI, even small changes in these 
variables can induce meaningful relative increase 
in total daily EE. However, it should be noted 
that inactive skeletal muscle has a relatively low 
specific metabolic rate (13 kcal/kg/day) compared 
to tissues like the heart and kidneys (440 kcal/kg/
day), brain (240 kcal/kg/day), and liver (200 kcal/
kg/day).137 Accordingly, small organs with high 
specific metabolic rates account for ~60% to 70% 
of resting EE despite having a combined weight of 
<6% of total body weight,137-142 with inactive skeletal 
muscle comprising ~40% to 50% of body weight 
but accounting for ~20% to 30% of resting EE.137-140 

Therefore, only large increases in muscle mass will 
be meaningful if the hypertrophied muscles remain 
sedentary, highlighting the importance of long-
term behavior modification and sustainable access 
to optimal exercise equipment.

Breaking Up Sedentary Time 

Despite the known benefits of exercise, the 
adoption of a physically active lifestyle has 

remained low among those with SCI.143 Compared 
with noninjured individuals and those with other 
chronic disorders, individuals with SCI have long 
ranked at the lowest end of the human fitness 
spectrum.144,145 Independent of PA, prolonged 
periods of sedentary behavior, which can be typical 
for many individuals with SCI, have been shown 
to decrease lean mass and negatively affect overall 
metabolic and cardiovascular health of persons 
without SCI.146-148 Further, the health protective 
effects of moderate-to-vigorous PA may not be able 
to counteract the detrimental effects of prolonged 
sedentary time149,150 and may even be negated by long 
periods of sedentary time.151 Research in noninjured 
adults reports that brief interruptions of sedentary 
time led to significant improvements in metabolic 
health, regardless of the activity's intensity.149,150,152 
A recent study in adults with chronic paraplegia 
reported similar findings.153 This suggests that brief, 
low-intensity interruptions of sedentary time may 
be an important clinical intervention for improving 
metabolic health, especially in a population 
known to spend large amounts of time being 
sedentary. However, there are population-specific 
considerations for breaking up sedentary time in SCI. 
Current research practices in the general population 
rely heavily on seated time as a proxy for sedentary 
time, and wheelchair users are in a constant state 
of sitting. Unfortunately, alternative definitions of 
sedentary time among persons with SCI have yet 
to be developed. Wearable devices used to quantify 
sedentary time in community-dwelling individuals 
with SCI show a high proportion (~87%) of the 
day spent in sedentary time,154 emphasizing the 
need for understanding sedentary behavior in this 
population as well as the potential for interventions 
targeting sedentary time. An alternative approach 
could involve setting a minimum cutoff for EE, 
where a task with an energy cost below this level 
qualifies as sedentary behavior. However, the low 
energy cost of most activities of daily living92,93 draw 
into question the utility of interrupting sedentary 
behavior as a means for weight management. 

Several studies in adults without SCI quantified 
the EE of various light-intensity activities performed 
intermittently during sedentary periods.155-157 

Walking at a self-selected pace for 2 to 5 minutes 
once per hour was reported to increase total EE 
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by 60 to 132 kcal over 8 hours.155,157 Another study 
reported that simply accumulating 2 to 4 hours 
of standing time throughout an 8-hour workday 
can significantly increase EE (up to 57 kcal/day) 
compared with sitting alone.156 The low calorie 
cost of these studies from persons without SCI 
is promising, as large changes in EE might not 
be required for small breaks in sedentary time to 
make an impact on overall health. However, it 
should be noted that the modest increases in EE in 
these studies occurred due to walking or standing; 
persons with SCI will need to find other, likely less 
costly, activities by which to break up sedentary 
time. The low requirements of PA and activities of 
daily living in individuals with SCI92,93 suggest that 
unstructured activity in persons with SCI has an 
even lower potential to meaningfully contribute to 
a calorie deficit. 

The current population-specific activity 
guidelines,3,60 which encourage moderate-to-
vigorous PA, should be promoted as a means for 
improving physical capacity. However, modifications 
may be necessary for managing obesity. In persons 
with SCI, unstructured PA appears to have low 
utility in increasing EE due to the low calorie cost 
of most PA tasks,92,93 but future research should 
investigate the independent effect of sedentary 
behavior to determine an inclusive representation 
of the requirements for inducing clinically relevant 
improvements in metabolic health and, specifically, 
obesity.

Conclusion

Identification of accessible and affordable 
treatments for obesity are warranted, as obesity is 
the most common CMD risk factor in SCI,3 and 
secondary health complications have a negative 
impact on quality of life in this population.158-160 
Exercise is a primary treatment strategy for CMD 
in SCI,3 but there are important considerations for 
tailoring exercise to manage obesity in SCI. Exercise 
for obesity management should primarily aim to 
induce a negative energy balance and secondarily 
increase the use of fat as a fuel source. Unfortunately, 
in SCI reduced muscle mass and oxidative capacity 
result in a limited ability for activity to induce a 
negative energy balance, with calories expended 
primarily from carbohydrates. These constraints 

must be considered when designing activity for 
obesity management in SCI, especially in higher 
level injuries, but certain forms of exercise have a 
greater therapeutic potential in this population. We 
suggest that exercise for obesity in SCI should target 
large muscle groups and aim to induce hypertrophy 
to increase total EE in response to training. 
Furthermore, exercise that maximizes the use of 
glycogen might induce meaningful postexercise 
shifts in the use of fat as a fuel. Future research 
should aim to determine the importance of breaking 
up sedentary time in SCI. However, the low energy 
cost of PA in this population likely limits the range 
of useful activity strategies for obesity management 
and calls into importance combinatorial approaches 
that achieve calorie deficit via modifications of 
multiple different behaviors. 
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